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A class of solutions of the gas-dynamics equations containing a function arbitrariness is used for a qualitative and quantitative 
analysis of the gas flow which occurs as a result of the interaction between Riemann compression waves. Two types of flow are 
investigated matched flow, when the adiabatic exponent is matched in a special way with the initial geometry of the compressed 
volume, and the general case when there is no such matching. For matched interaction of non-self-similar Riemann waves, a 
phenomenon of partial collapse is established (only part of the initial mass of the gas is compressed to a point); here the asymptotic 
estimates for the velocity, density, internal energy and optical thickness are the same as for self-similar compression. It is proved 
that unmatched interaction of self-similar Riemann waves does not lead to unlimited unshocked compression of the gas; in this 
case a shock wave occurs when the maximum density of the gas is finite. The results obtained enable us to say that two-dimensional 
processes of unlimited compression are stable for a fairly wide range of perturbations. © 1999 Elsevier Science Ltd. All rights 
reserved. 

An investigation of the properties of unlimited unshocked compression processes is related, in particular, 
to the question of whether it is possible to use them to produce the conditions necessary for a 
thermonuclear reaction to occur [1]. 

The simplest process of unlimited compression--self-similar compression of a plane layer of gas into 
a plane--is described by a self-similar Riemann wave [1]. The use of non-self-similar Riemann waves 
enables one to construct the compression of a plane layer which ensures an unlimited increase in the 
gas density only on the surface of the compressing piston. In this case the energy costs for such 
compression may be finite [2]. 

The flow obtained as a result of matched interaction of self-similar Riemann waves has been 
constructed analytically [3], for which estimates of the values of the velocity, energy and density [3] and 
the optical thickness [4] are known. This problem is a special case of the problem of the matched 
interaction of non-self-similar Riemann waves [5]. To construct an analytic solution, a class of exact 
solutions of the gas-dynamics equations, namely, double waves, has been used [6]. For the non-self- 
similar case a two-parameter class of compressing piston control has been investigated. For the flows 
considered estimates have been derived for the increase in the velocity and density of the gas, which 
agree with estimates obtained for the self-similar case. It has been proved that part of the initial gas 
volume is compressed into a certain surface [5]. 

The purpose of this paper is to investigate a wider class of flows compared with those considered 
previously. 

The fact that a shock wave can occur has been proved analytically for unmatched interaction of self- 
similar Riemann waves. The gas flow is constructed in the class of solutions with a degenerate hodograph 
of the double self-similar wave type. The integration of the gas-dynamics equations is reduced to finding 
a solution of one partial differential equation for one function of two variables (the double-wave 
equation), which is solved numerically by the method of characteristics. 

A class of control of the compressing piston which contains a function arbitrariness has been 
investigated for coordinated interaction between non-self-similar Riemann waves. For this problem an 
analytic solution exists [5], but the asymptotic properties of this solution are not obvious. Asymptotic 
estimates of the gas-dynamics quantities have been obtained by a qualitative analysis of the equations 
of motion of the gas particles, and the existence of regions of the initial gas volume which are compressed 
into a surface and into a line was proved. The form of these regions was obtained approximately by 
numerical integration of ordinary differential equations. 
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Fig. 1. 

1. F O R M U L A T I O N  OF THE P R O B L E M  

A uniform ideal gas at the instant of time t = 0 is at rest inside a prism with a cross-section OM, S,N, 
(Fig. 1). Consider the equation of statep = Ap ~, 1 < 7 < 3. Without loss of generality we will assume 
that the velocity of sound and the density of the unperturbed gas are equal to unity. The sections OM° 
and ON, are the initial position of the compressing piston, which at a certain instant t < 1 take the form 
DEIF1 and DE2F2. In the trapezia E1F1GIS and E2F2G2S the gas flows are one-dimensional simple waves 
(non-self-similar Riemann waves). The region of interaction of the one-dimensional flows is denoted by 
DEISE2, where the solution is constructed in the class of double non-self-similar waves. The unperturbed 
gas is situated in the quadrilateral SG1S, G2. The length of the walls M°S, and N,S, is equal to unity, 
and at the final instant of time the sound perturbation arrives at the point S,. We will denote the value 
of the angle NoOM° by 2tx. In the case of matched interaction between simple waves, o~ = o~, where 

c t g c t  o =h ] ),+1 (1.1) 

Here, as a result of non-self-similar compression at the final instant t, = 1, the gas occupies the region 
D,E1,S,E2,. The points El* and E2, can be as close to the point S, as desired. For the self-similar case 
the region D,E1,S,E2, contracts to the point S,. 

2. FLOWS OF GAS OF THE SIMPLE-  AND DOUB L E -W AVE  TYPE 

The motion of the plane parts of the piston (sections ElF1 and E2F2) is governed by the equations 

x2 = fl(t), xlsin2¢t - x2cos2a = f2(t). 

We will assume that the velocities of motion of the plane parts of the piston at the initial instant 
are equal to zero, and that they then increase monotonically. We will introduce the following 
notation: U1 and U2 are the components of the velocity vector, c is the velocity of sound, O = 6c, 
6 = 2/(T- 1), (f/1)-1 = zi are inverse functions for the derivatives f/1. The gas flow is given by the following 
relations [6] 

( ) u~x, + ~ x 2  - o - l o + . ~ . 1  +u~u2 t + A i ( o ) . . i  = aui 
dO 

In region EIF1GIS 

In region E2F2G2S 

u t  = 0 ,  u2 = O - a ( 2 . 1 )  

u t  = ( O  - a ~ o s c t ,  u 2 = - (O - o)sintx (2.2) 

The functions 6,(0) can be found from the condition that a simple wave should be attached to the piston [5] 



Two-dimensional interaction of Riemann compression waves 415 

A i ( O ) - - ' ( ~ O - ( ~ i -  fi(Yi~ Yi = Zi(O-(~) 

In the self-similar case the functions A/(O) are constant. 
To describe the motion in the region DEISE2 we need to solve the equations of the non-self-similar 

double waves for the functions O = O(ul, u2) and X = Z(ul, Us) [6] 

o{O-o',)o,, + ~o,o,o,, + O-o;)o=)+ 0-oXo; +022)+ 2°=0 (2.3) 

(,- o;)z. + 2o,o,z,, + (l-o~)z. =0 (2.4) 

( ~ .u i aulau/ a2e ~ , Z0 a2Z / • Oi = _ . . ,  Oo = Z~ = = 
' auiauj 

It follows from (2.1) and (2.2) that for gas particles in the region DE1SF2, the velocity vector (ul, U2) 
belongs to the set 0 ~< Ul < oo, Uz > - uletg20t. The implicit formulae 

x~ = (u~ + o-lOO~)t + g,. (2.5) 

specify the gas flows in the double-wave region. The boundary conditions for the functions O = 
O(ul, u2) and X = Z(ul, u2) correspond to the condition that the double wave should join the simple 
wave. For interaction between two similar simple waves, the gas flow will be symmetrical about the 
straight line OS., and in this case it is sufficient to obtain the solution in the region DE1S. The condition 
that the two waves of different ranks should join is satisfied on the section E1S, and the impermeability 
condition ul = u2ctgct is satisfied on section DS. 

3. THE MATCHED CASE 

If the value of the angle o~ is given by relation (1.1), the solution of Eq. (2.3) has the form 

0 = a + hu I + u 2 (3.1) 
We will write the general solution of Eq. (2.4) in the form [5] 

Z=V,(u,)+V~(~), ~=ut+Su2,  8 = , / ( ~ + I X 3  ~ ) / ( ~ - l )  

The derivatives ~P~ (Ul) and ~ (rl) are found from the condition for the double wave to join the simple 
waves [51 

~;(.,)=-~{(l+~.,)~,(.,)_~,[~,(.,)l} 
' { ( , + ' + " ) ( ' )  [ ( ' ) ] }  o 

%(n)=-g -5--g  z, g -Ji z, g , ~ = g  

Hence, the gas flow in region DEISE2 is given by the formulae 

x| = r,h +(u, + O-'(t~ + hu; + u2)h)% + g1(u,)+ 8-tg2()l) (3.2) 

=Tl[u,I--ron----g---+ h + 3 _ ¥ u  I t° 
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Here x = t - t., r, is the length of  the sections M.FI.  and N,F2. (Fig. 1). The parameter r. gives 
the position of the rectilinear parts of the piston (the sections ElF1 and E2F2) at the final instant of 
time t.. 

The laws of motion of the plane parts of the piston (the functions fl  and f2) determine the functions 
gl and g2. We will consider Riemann waves in which the gradient catastrophe only occurs at the final 
instant of time; then the gradient catastrophe does not occur in the region of interference between one- 
dimensional flows up to the final instant [5]. In addition, the gas density on the piston surface at the 
final instant must be infinite. If these limitations are satisfied, gl and g2 do not increase in the interval 
[0, + oo), g2(0) = 1 - r., gl(0) = h(1 - r,), gl(oO) = g2(oo) = 0. For the case of self-similar compression 
gl = g2 = 0, r. = 1. The particle trajectories are found from the equation 

dxildx = ui(xj, x2, "0, i = 1, 2 (3.3) 

Formulae (3.2) implicitly define the function ui(xl, x2, x), and the absence of a gradient catastrophe 
ensures that Eqs (3.2) are solvable for the velocity components [5]. The class of solutions considered 
contains function arbitrariness, the functions gl and g2. 

4. M A T C H E D  I N T E R A C T I O N  B E T W E E N  
N O N - S E L F - S I M I L A R  R I E M A N N  WAVES 

It follows from the fact that the functions gl and g2 are monotonic, that the functions xi(ul, u2, x), 
i = 1, 2, given by (3.2), for fixed x, decrease with respect to Ul and u2 (the property of monotonic 
decrease). 

Assertion 1. Consider a mobile region, bounded by the condition 

x2 <k(x) (4.1) 

The gas particles to be found in region (4.1) at a certain instant of time Xl ~ [-1, 0), when z > Xl will 
remain in this region. 

Proof. Take a gas particle from region (4.1). We will denote the coordinates and velocity of the chosen 
particle by (Xl(X), x2(x)) and (ul('0, u2(x)) respectively. The coordinate x2 of the point E1 is equal to 
fl(x), and the velocity of the gas particle at the point E1 is (0,]al(x)). We will assume that, at a certain 
instant of time x < 0 the particle (xl(x), x2(x)) leaves the volume (4.1), i.e. 

x2(~) =fl(x) (4.2) 

u2(x) >fl(x), ul(x) > 0 (4.3) 

For the relation between the velocities given by (4.3), it follows from the property of monotonic decrease 
thatx2(x) < fl(x); this contradicts assumption (4.2). Consequently, the point must remain in region (4.1). 

Assertion 2. At the final instant of time (x. = 0), the curvilinear part of the piston (line DE1) coincides 
with the section D.E 1, lying on the straight line x2 = r.. 

Proof. It follows from Assertion 1 that the curvilinear part of the piston is situated in region (4.1); 
in particular, at the final instant of time for points of the line DEI the conditionx2 ~< r. is satisfied, where 
r. is the coordinate x2 of the point El, .  We will prove that when x = x. for points on the line DE1 the 
equality x2 = r. is satisfied. We will assume the contrary, i.e. that for part of  the line DEx the strict 
inequality x2 < r. is satisfied. It follows from (3.2) that the velocity of these particles is infinite; then 
the value of the density is also infinite. Hence, in a certain finite volume, adjoining the piston, at the 
final instant the density will be infinite, which is impossible for a finite mass of gas. Consequently, the 
last assumption is untrue and the piston coincides with the section D.E1.. 

In Fig. 2 we show compressing pistons at a certain Xle (-1, x.). The straight lines AFx and BF2 are 
drawn through the sections ElF1 and E2F2 respectively. It follows from Assertion 1 that for gas particles 
in the region DAE1, when x e Ix1, x.] the inequalityx2(x) ~< fl(X) is satisfied. In particular, according to 
Assertion 2x2(x.) = f l(x.)  = r.. Hence, at the final instant this part of the gas contracts to the section 
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D,E1,. Similarly, region DBE2 contracts to the section D,E2,. The region DACB--the intersection of 
regions DAE1 and DBE2--then contracts to the point D,. The form of the regions which contract to a 
point and to a section can be found approximately by numerical integration of the equations of particle 
motion (3.3). The results of calculations forr, = ri (ri = 0.3, 0.6 and 0.9) are shown in Fig. 2. The regions 
A~BiCi contract to the section D,EI,, and regions OAiBi contract to the point D 

The degree of velocity cumulation. We will now consider the case of the interaction between two 
similar Riemann waves. The gas flow pattern will be symmetrical about the straight line OS,, for 
gas particles in the region DE1S, and the velocity vector (Ul, u2) belongs to the set defined by the 
inequalities 

0 ~ uj < ,,,, u 2 > hu I (4.4)  

We will obtain the asymptotic form of the velocity increase at the point D as x ~ 0. For a point moving 
along the axis of symmetryxl = hx2, the components of the velocity vector are related by the equation 
ul = hu2. Then 

x 2 = r. + (1 + h2u2)x + g2 (au2), a = 8 + h (4.5)  

We differentiate (4.5) with respect to time and solve for dx/du2; as a result we obtain the linear equation 

a~ h 2 " 
= x + ag2(au2) 

du2 (l-h2)u2 -1 (l-h2)u2 -1 

which is integrated in quadratures 

( 1 ,~l/~ 
= k) +l + 

,k 

'(u,'=-a(l+~)22g~(au2(u2+l+~)-l-Illldu2 

- 2 _ 2 , / /  

(4.6) 

(4.7) 

(x0 is the instant when the particle begins to move). The integral I(u2) ~ k, since otherwise the function 
x becomes positive. 

We will prove that limu2-~** I(u2) < kD, where kD is the value of the constant k for a particle at the 
point D. Since the region DACB (Fig. 1) contracts to the point D,, the velocity of the point C increases 
without limit. We have limu2-~J(u2) <<- kc, where kc is the value of the constant k for the point C. The 
point D begins to move earlier than the point C, and hence it follows from the definition of the constant 
k that kn > ko  Hence, the limit 0 < limu2__~l(u2) <~ kc < kD holds; consequently, the first factor on 
the right-hand side of (4.6) does not vanish as u2 ~ oo. Then, according to (4.6) 
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x(u)= u 13 u=O(( -x)  ~) (4.8) 

where u is the value of the velocity of the point D, i.e. the degree of cumulation, as in the case of self- 
similar compression, is equal to 13. 

An estimate of the optical thickness in the direction of the line of symmetry. We will introduce the function 

n(.:, c(x), E(,c, m))= tcE('t)= J pas, c('o 
CE 

the law of motion of a certain point in the region DE1FiS.F2E 2. The law of motion of the optical centre 
(C(x)) may not correspond to the trajectory of a certain gas particle. The angle q) specifies the direction 
of the section CE and the point E lies on the boundary of the region occupied by the gas. The optical 
thickness is then defined as l(x) = marc ~) rain. H 

, , y  • • 

We were unable to determine the value of the optical thickness analytically, so we obtained estimates 
of H for different directions (p. The optical thickness along the section DS has the form 

~ o ~ , 

1~('0= J pds= / p(xl(x2), x2, x)bdx2=b I P(Ut(U2), u2)~. du2, b=41+h ~ 
tXT x ~D " D au 2 

By (4.5) 

dx2 = h2x + ag~(au2), p(u~h, u2) = (1 + h2u2) ° 
d~ 

and we obtain 

l tos(X) = I~ + 12 

U U 

! 1 = - ~  (1 + h2u2)°h2xdu2 = h~x~ (1 + h2u2)°du2 
0 0 

U 

12 =-J" (1 + h2u~)°ae~(au~)au2 
0 

Here u is the value o f u  2 for the point D at the instant x. Taking into account the fact that x(u) = O(ul/~), 
we obtain the estimate 

J (I + h2uz)Oau2 = O(u °+l), 
0 

W ---> oo 

Hence, the integral I1 is a quantity O(u -u~) as u ---> oo and a quantity O(x -1) as x --4 oo. It follows from 
the convergence of integral (4.7) that the order of increase of the quantity/2 is less than O(u-UP). Hence 

This asymptotic form of the increase in the optical thickness was obtained for the self-similar case 
in [4]. This estimate remains true for the optical thickness along any section AB, taken along the line 
of symmetry, if estimate (4.8) holds for the velocities of points A and B. 

An estimate of the optical thickness in a direction different from the direction of the line of 
symmetry. 

Assertion 3. At a certain instant of time xl < 0 on the section DS we choose a gas particle whose 
coordinates and velocity we will denote by (x,y) and (u, v). We will choose the notation (xz, x2) and (ul, 
u2) for the coordinates and velocity of a certain particle, chosen in the region DE1S. Then (1) if 
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Xl(Xl) < x(xl), then, for x > x 1, we will havexl(x) < x(x); (2) ify(xl) < x2(xl), then, for x > xl, we will 
havey(x) < x2(x). 

Proof We will assume that, at a certain instant x 

xl('0 =x('0 (4.9) 

This means that ul(x) >~ u(x). It follows from (4.4) that u2 > ul/h >~ u/h = a~. Then, according to the properties of 
monotonic decrease xl(x) < x(x), which contradicts assumption (4.9). The first part of the assertion is proved. The 
second part is proved in a similar way. 

We will introduce a system of coordinates Oxy in which the Ox axis is directed along the straight line 
OS. At a certain instant of time we choose two gas particles A and B on the Ox axis such that their 
coordinates are subject to the condition 

xo <xA <xB (4.10) 

and estimate (4.8) holds for the velocity of point B (Fig. 3). We will further consider the volume of gas 
bounded by the straight lines OS, x2 = x2a('c) and Xl = x~(x ) ,  x2a(x) is the x2 coordinate of point A and 
xts(z) is the xl coordinate of point B. We will denote this region by Xq(z). It follows from Assertion 3 
that the mass of gas enclosed in the volume f2(x) does not decrease. This mass of gas at an arbitrary 
instant of time can be defined by the formula 

m = l p(x, y, x )a r~y  = 
t~fx) 

x A Y x A 

(4.11) 

(we have changed from the double integral to a repeated integral). Here l(x, x) is the optical thickness 
in the direction of the straight line Oy. By the theorem of the mean the last term in the chain of equalities 
(4.11) is equal to rl(~, z),  x,4 <~ ~ ~ xB, r = xB - x,4. Consequently, l(~, "r) = m/r. The  following estimate 
of the quantity r follows from (4.5) and (4.10) 

~u2x  u2x ) (4.12) 

where u2 is the u2 component of the velocity vector of theooint  D at the instant of time x. By (4.8) the 
estimate O(u2 l+r~) holds for u2x as u2 -4 oo and O ( ( - z )  --hz) as x -4 0. It follows from the convergence 
of the integral in (4.7) that lim,2__~g'z(au2)/(u2x) = 0. It then follows from (4.5) that the asymptotic 
form of the quantity r is determined by the factor u2x = O((-x)-h2). We obtain the following estimate 
for the optical thickness 

l({, "0 = m l  r = O((-~) -*-2) (4.13) 
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We will take the point C = (~, 0) as the optical centre (in the Oxy system). Then 

los > lco >I IDA, los > lc s >~ Its 

whence it follows that the following limits hold 

C--L < IcD < C2 , c.-~.3 < lC s < c_A.4 
T, "C "C "C 

where ciQ = 1, . . . , 4) are positive constants. In this case the optical thickness in the direction of the 
straight line Oy is not less than I(~, x), for which estimate (4.13) holds. Similar results were obtained 
for the self-similar case in [4]. 

An estimate of  the energy costs. The work of the moving piston goes to increasing the amount of kinetic 
energy Ek and internal energy E i of the gas. By definition 

Ek = J + pav 
v 2 

while for the equation of state considered 

E i = Ell ~ pdV + El2, E a, El2 = const 
V 

We will denote the length of the velocity vector by u. The following asymptotic relations hold 

r = c ° = O ( u  ° ) ,  p = A p  v = O ( u  <y+2), u ---> 0o 

Consequently, the integrands in the formulae for the potential and kinetic energy as u ---> ~ are of 
(7+2 the same order: O(u ). Hence, to estimate the energy costs it is sufficient to estimate the value of 

the kinetic energy. To do this we will estimate the velocity values in the neighbourhood of the point D 
in Fig. 1. 

Assertion 4. We will take a gas particle on the line of symmetry, for whose velocity estimate (4.8) is 
satisfied; we will denote the chosen particle byA. Consider the mobile region 

x2 < x l l h ,  xl <XIA  (4.14) 

Positive constants k 1 and kz exist such that for any point of region (4.14), for any x we have 
klU > UD > k2u, where UD and u are the velocity values of the point D and of points of the region (4.14), 
respectively. 

Proof. We will assume the opposite: for any constants kl and k2 and instant of time x and a point from the region 
(4.14) exist such that klU <~ uo or Uo <~ kzu. Estimate (4.8) holds for the velocity of pointsA and D; consequently, 
a constant k > 0 exists for which UD < ku/, for instants of time close to the final instant. We will take kl = kb, 
k2 < ( 3 -  y)/2. 

We will assume that in the volume in question there is a particle for which klU ~ up. Then klU2(U~/U~ + 1) lrz < 
uzob < kuzab and consequently u2 < Uz4, ut4 > u2h > uv It follows from the property of monotonic decrease that 
x2 > xz4. This contradicts the second part of Assertion 3. 

We will assume that a particle exists for which UD <~ kzu, i.e. (u~o + u~D) V2 < kz(u21 + u2) m. Then uzo < uzob(u~ 
+ u~ + 1) -1/2 < kau2. In addition, ul > 0. It follows from formulae (3.2) and (4.5) and the property of monotonic 
decrease that x2 < Xzo, which contradicts the second part of Assertion 3. 

Then, the following estimate exists for the kinetic energy of the gas enclosed in the volume (4.14) 

2 - 2 1 
mUmin mUmnx I 

2 ' 2 J' m =  pdv 

where m is the mass of gas enclosed in the volume (4.14), and Umi n and Uma x are the minimum and 
maximum velocity values in this volume. It follows from Assertion 4 that, in the region (4,14), the 
following estimate holds for the total energy of the gas 
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qu~ < g < c2u2o, q,  c 2 - eonst > 0 

Taking estimate (4.8) of  the value of the velocity of the point D into account we obtain cl(-'c) 2~ < 
E < c2(---x) 2~. The remaining gas volume does not change this estimate since the velocity in this part is 
less than the velocity of  the point  D. 

The estimate E = O( ( - ' 0  ~1~) was obtained in [3] for self-similar compression. 

5. U N M A T C H E D  INTERACTION B E T W E E N  
S E L F - S I M I L A R  R I E M A N N  WAVES 

The gas flow pattern will be symmetrical about the straight line OS., so we will henceforth consider 
only half of the prism OS,M.. The flow in a self-similar Riemann wave (the trapezium EIF1G1S, 
Fig. 1) is defined by the formulae 

OR = o + u  2, x2 = r. +(u2 +o-lOR)~ 

In the region DE1S the gas flow is a double self-similar wave, in which the coordinates of the particles 
and the components of  the velocity vector are related by the equations 

xi=(ui+o-looi)'c+gi, g ] = r . c t g a ,  g2=r .  (5.1) 

The function O(Ul, u2) is found from Eq. (2.3). The following condition corresponds to a double wave 
adjoining a simple wave, in which ul = 0. 

0(0, u2) = OR(u2) (5.2) 

The symmetry about the straight line xl = x2 ctg (x (the straight line OS.) leads to satisfaction of 
the impermeability condition Ul = u2 ctg o~ on the straight line. From (5.1) we obtain that the 
impermeability condition to occur along the straight line OS, corresponds to the second boundary 
condition 

Ot(u 2 ctg¢~, u2) = O2(u 2 etga, u2)ctga (5.3) 

The equation of double waves must be solved in the set 

0 ~< ul ~<u2ctg ~ O~u2<,,. (5.4) 

Moreover, to solve (2.3) numerically it is necessary to determine the quantity O1(0, u2). It follows 
from (5.2) that 

Oa(0, u2)=l,  022(0, u2)=0 (5.5) 

Substituting these quantities into Eq. (2.3) and introducing the notation 

X=O(0, U2)=Oq'U2, y(x)=Ol2(0, U2) 

we obtain the following equation, which is satisfied on the straight line ul = 0 (we have in mind a straight 
line in the plane of the hodograph, Ou]u2) 

xdy/dx + (1 -o ' )y  = -(1 + o )  

solving which, we obtain 

Ol(0, u2 )=[k (o+u2)  °-I +h2] i/2, k =eonst (5.6) 

Substituting ul = u2 = 0 into condition (5.3) we obtain O1(0, 0) = O2(0, 0) ctg o~ = ctg o~. From this 
equation we find 

k = ot-e  (etg 2 o~ - h  2) 
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It follows from (5.2) that 02(0, u2) = 1. By substituting this quantity into the equation of the direction 
of the characteristics 

= o,o2 • 40; + o; -l 
du 2 1 - OI2 

it can be shown that the straight line ul = 0 is a characteristic (at least, sections of this straight line on 
which O1 >I 0). 

Consider the case when ct < or0. We need to solve Eq. (2.3), which satisfies boundary conditions (5.2), 
(5.3) and (5.6). Hence, we have set up a mixed problem with boundary conditions on the characteristic 
straight line ux = 0 and with additional conditions along the line, which is not a characteristic. This 
problem was solved numerically by the method of characteristics in [4]. 

If et > oh, then k < 0, and for a certain value u2 = uc the derivation of O1(0, uc) becomes zero. By sub- 
stituting the values O1 = 0, 02 = 1 into the equation of the direction of the characteristics, it can be shown 
that the directions of the characteristics of the two families at this point are identical, i.e. when oc > ct0 
Eq. (2.3) is not hyperbolic over the whole region (5.4). It is only possible to obtain the degeneracy line, 
specified by the relation O] + 022 = 1, numerically by solving Eq. (2.3) by the method of characteristics. 

A shock wave on the boundary of a simple and a double wave. At the instant when the shock wave is 
formed the Jacobian of transformation (5.1) becomes equal to zero. Consider the expression 

1 D(xl, xa) - 
J(u~, u2)=(t,__l) o(u,, ,,2)- 

,, o 

The line ua = 0 corresponds to the line where the double wave joins the simple wave in the hodograph 
plane, along which 

,,o. 
O J k o ) (5.7) 

Oi2(0, u2) = k(~s- 1)O"-2(200 -' 

We will obtain the derivative of Ol1(0, u2). Differentiating Eq. (2.3) with respect to the variable ul, 
we obtain 

e l  ((1 - o22)e  n + 2e ~eae~2  + (1 - e ~ ) o 2 2 )  + 

443[(1 - O22)Om +2CrOne,2 +2e~OaOm -20~enon + 

+(1 - O~)Om~] + (1 - a)(2OiO) l + 2OaOla) = 0 

(5.8) 

We will introduce the notation 

x=O(0,  u~), y(x)=On(O, u2), y'(x)=On2(0, u2) 

a(x)=Oi(O, u2), a'(x)=Ol2(0, ua), a"(x)=Oia2(O, u2) 

Taking into account the fact that equalities (5.5) are satisfied for the straight line ul, we can write 
Eq. (5.8) in the form 

y,= O-a')a" (5.9) 
x k a )  x 2a 

A solution can only be obtained in terms of elementary functions for certain values of the adiabatic 
exponent; in the remaining cases this linear differential equation was solved numerically. For 7 = 5/3 
the general solution has the form 
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Oa x~f~ a < c t o  
On(0'  u 2 ) = - 1 6 ( k O ~ + 2 )  [g  a > ~ 0  

f --- (l 7 2 " ~ ~ e  R arctg(k,f~-2e~¢) - 32eRl) (/,'O,~ + 2) + 2k(/,-O,~ + 4) 

g =.-(17 +s2eRl)( .  + 2 ) -   .k(ke  + 4), l = co, st 

The constant l can be obtained from condition (5.3), by differentiating which along the straight line 
u2 = ul tgot, we obtain relations that are satisfied on this straight line 

don = Ola + tgotOn2, n -- 1, 2; 
au] 

dO......g2 = tg ct dOl 
du] aUl 

Hence we obtain the value of  the derivative Ol1(0, 0) = (ctg cx- tg (x)O12(0, 0). Substituting the value 
obtained for the derivative Ol1(0, u2) into (5.7), it can be shown that if the angle (x ~ (x0, a certain value 
u e (0, +~o) exists for which J(0, u) = 0. Hence, a shock wave occurs when the velocities of the gas 
particles and their density are finite. When (x > ix0 a shock wave is formed up to the line of parabolic 
degeneration of the equation of  the double waves. The velocity value for which a strong discontinuity 
occurs is less than the corresponding value for cx < cx0. From the point of view of obtaining large local 
densities it is interesting to consider the case when (x < (x0. Numerical solution of Eq. (5.9) for different 
values of (x and ~, leads to the same conclusions. 

The results of  numerical calculations. After finding the function O the gas flow in the double-wave 
region is defined by (5.1). We must now indicate the law of the piston motion which ensures such 
compression. This problem reduces to integrating the system 

d.x,/dr = u~, ax2/&=u2 

The components of  the velocity vector are found from (5.1). The initial conditions correspond to 
the conditions for the double wave to approach a simple wave at the instant t = t o at the point ElF 
(Fig. 1) 

"1 t , - l /O+a)  u,(to)=O, u 2 ( t o ) = u ~ ( t o ) = o (  - o) - o  

where uR is the velocity of the straight part of the piston (section ELF1, Fig. 1). 
The law of the piston motion was found numerically. We carried out calculations which indicate what 

degree of compression can be obtained when self-similar Riemann waves interact. Thus, for ~' = 5/3 (a 
monatomic gas), the maximum local degree of compression (at point D in Fig. 1) at the instant when 
a shock wave occurs is equal to 19,000, for (x = x/6, but the density increases only by a factor of 1450 
for ot = x/9. The closer the value of  the angle to the matched value the greater the degree of compression 
that can be achieved at the instant when the strong discontinuity occurs. 

Calculations were carried out on meshes which differed in the choice of mesh width on the straight line ul = 0 
in the hodograph plane, with a minimum mesh width of 0.005. Good agreement between the results of calculations 
carried out on meshes with mesh widths differed by a factor of two were obtained. 

Figures 4-7 were drawn using calculations of the compression of a gas with an adiabatic exponent of ~ = 5/3. 
In Figs 4 and 5 we show fragments of the fields of the characteristics in the plane of the self-similar variables ~/= 
(xi - gi)/x, and also the positions in this plane (at the instant when the shock wave occurs) of the mobile pistons 
and the boundaries of propagation of the sound perturbation. The same notation as in Fig. 1 is used, namely, ElF1 
is the rectilinear part of the piston and EIF1GIS is the region in which the gas flow is a Riemann wave. A shock 
wave occurs on the piston surface, at the boundary of the straight line and the rectilinear part (point El in Fig. 1). 
At point El the characteristics of one family intersect without touching, and the corresponding characteristics in 
the hodograph plane do not intersect. The mobile piston is represented incompletely since the remaining part of 
the piston is considerably elongated along the line of symmetry and practically merges with it. 

The density distribution along the straight line OS. (at certain fixed instants of time, the distance x is measured 
from the point S. and the unperturbed gas density is P0) is shown in Fig. 6 for ct = ~/6 at t = 0.979, 0.988 and 
0.992, and in Fig. 7 for ct - ~/9 at t = 0.907, 0.947 and 0.963 (curves 1, 2 and 3, respectively). 

Concluding notes. Asymptotic estimates for the non-self-similar case show that important asymptotic 
properties of the interaction of self-similar Riemann waves may be retained when there is a considerable 
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change in-the law of motion of the compressing piston, which indicates partial stability of this process. 
However, the interaction of self-similar Riemann compression waves at an angle which differs from- 

the matched angle does not enable an unlimited increase in the gas density to be obtained without the 
formation of shock waves. Although numerical calculations have shown that the maximum local density 
may increase by a factor of tens of thousands compared with the unperturbed state, to solve the problem 
of unlimited unshocked compression it is necessary to invoke new classes of flows [2]. 
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